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Digital signal processing, more commonly known as DSP, is a 
field of study with increasingly widespread applications in our 
technological world. This book focuses on the development, im-
plementation, and application of modern DSP techniques. The 
textbook structure consists of three major parts as summarized 
in Table 1.

Audience and Prerequisites
This book is targeted primarily toward second-semester juniors, 
seniors, and beginning graduate students in electrical and com-
puter engineering and related fields that rely on digital signal 
processing. It is assumed that the students have taken a circuits 
course, or a signals and systems course, or a mathematics course 
that includes an introduction to both the Laplace transform and 
the Fourier transform. There is enough material, and sufficient 
flexibility in the way it can be covered, to provide for courses 
of different lengths without adding supplementary material. 
Exposure to MATLAB programming is useful, but it is not  
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Table 1: Textbook 
Structure

Part Name and Chapters  

I Signal and System Analysis 

1. Signal Processing 

2. Discrete-time Systems in the Time Domain 

3. Discrete-time Systems in the Frequency Domain 

4. Fourier Transforms and Signal Spectra 

II Filter Design

5. Filter Types and Characteristics 

6. FIR Filter Design 

7. IIR Filter Design 

III Advanced Signal Processing 

8. Multirate Signal Processing 

9. Adaptive Signal Processing 
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essential. Graphical user interface (GUI) modules are included at the end of each chapter 
that allow students to interactively explore signal processing concepts and techniques  
without any need for programming. MATLAB computation problems are supplied for 
those users who are familiar with MATLAB and are interested in developing their own 
DSP programs.

This book is written in an engaging informal style that endeavors to provide motiva-
tion for each new topic and features a careful transition between topics. Significant terms 
are set apart for convenient reference using Margin Notes and Definitions. Important 
results are stated as Propositions in order to highlight their significance, and Algorithms 
are included to summarize the steps used to implement design procedures. In order to 
motivate students with examples that are of direct interest, many of the examples feature 
the processing of speech and music. This theme is also a focus of the DSP Companion 
course software, which includes a facility for recording and playing back speech and  
sound. This way, students can experience directly the effects of various signal processing 
techniques.

Chapter Structure
All of the chapters follow the template shown in Figure 1. Each chapter starts with a 
brief  list of the topics covered. This is followed by a motivation section that introduces 
one or more examples of practical problems that can be solved using techniques covered 
in the chapter. The main body of each chapter is used to introduce a series of analysis 
tools and signal processing techniques. Within these sections, the analysis methods and 
processing techniques evolve from simple to more complex. Sections near the end of the 
chapter marked with a * denote more advanced or more specialized material that can be 

Figure 1: Chapter 
Structure

Problems

Chapter summary

GUI software,
case studies

Concepts,
techniques,
examples

Motivation

Topics
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skipped without loss of continuity. Numerous examples are used throughout to illustrate 
the principles involved.

Near the end of each chapter is a GUI software and Case Studies section that intro-
duces GUI Modules designed to allow the student to interactively explore the chapter 
concepts and techniques without any need for programming. The GUI Modules fea-
ture a common user interface that is simple to use and easy to learn. Results exported 
from one module can be imported into other modules. This section also includes Case 
Study examples that present complete solutions to practical problems in the form of  
MATLAB programs. The Chapter Summary concisely reviews important concepts and 
includes a table of student learning outcomes for each section. The chapter concludes 
with an extensive set of homework problems separated into three categories and cross- 
referenced to the sections. The Analysis and Design problems can be done by hand or 
with a calculator. They are designed to test (and in some cases extend) student under-
standing of the chapter material. The GUI Simulation problems allow the student to 
interactively explore processing and design techniques using the chapter GUI modules. 
No programming is required for these problems. MATLAB Computation problems are 
provided that require students to write programs that apply the signal processing tech-
niques covered in the chapter. Complete solutions to selected problems, marked with the 

 symbol, are available using the DSP Companion software.

DSP Companion Software
One of the unique features of this textbook is a highly integrated collection of course 
software called the DSP Companion. It is available on the publisher’s companion web 
site, and it features a menu-based graphical user interface driver program called g_dsp. 
The DSP Companion runs under MATLAB and features supplementary course material 
that can be used both inside the classroom by the instructor and outside the classroom 
by the student. The DSP Companion provides direct access to the textbook material as 
well as additional features that allow for class demonstrations and interactive student 
exploration of analysis and design concepts. The DSP Companion is self-contained in 
the sense that only MATLAB itself  is required; there is no need for access to optional 
MATLAB toolboxes.

The menu options of  the DSP Companion are listed in Table 2. The Settings 
option allows the user to configure the DSP Companion by selecting operating  
modes and default folders for exporting, importing, and printing results. The GUI 
Modules option is used to run the chapter graphical user interface modules. In the 
Examples option, MATLAB code for all of  the examples appearing in the text can 
be viewed and executed. The Figures and the Tables options are used to display pdf 
files of  all of  the figures and tables that appear in the text. Similarly, the Definitions 
option displays definitions, propositions, and algorithms from the text. The next two 
menu options are only available with the Instructor version of  DSP Companion. The 
Presentations option displays PowerPoint lectures, with each presentation covering a 
section of  a chapter, while the Solutions option displays solutions to all of  the end 
of  chapter problems. For the Student version of  DSP Companion, there is a Marked 
Problems option that display solutions to selected end of  chapter problems. The Doc-
umentation option provides user help for the DSP Companion functions and the 
GUI modules. Finally, the Web option allows the user to download the latest version 
of  the DSP Companion from the publisher web site.
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Option Description Type Links 

Settings Adjust default settings   

GUI Modules Graphical user interface modules .m, .mat 11 

Examples View and run MATLAB examples .m, .mat 120 

Figures View all figures .pdf 431 

Tables View all tables .pdf 75 

Definitions View definitions, propositions, algorithms .pdf 58 

Presentations Display PowerPoint lectures (instructor) .pptx 91 

Solutions Solutions to all problems (instructor) .pdf 487 

Marked Problems Solutions to selected problems (student) .pdf 54 

Documentation Help for DSP Companion functions .m 124 

Web Software updates url 6 

Exit Exit DSP Companion   

Table 2: DSP 
Companion Menu 
Options
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Motivation

A signal is a physical variable whose value varies with time or 
space. When the value of the signal is available over a continuum 
of times, it is referred to as a continuous-time signal. Continuous-
time signals whose amplitudes also vary over a continuous range 
are called analog signals. Everyday examples of analog signals 
include temperature, pressure, liquid level, chemical concentra-
tion, voltage and current, position, velocity, acceleration, force 
and torque. If  the value of the signal is available only at discrete 
instants of time, it is called a discrete-time signal. Although some 
signals, for example economic data, are inherently discrete-time 
signals, a more common way to produce a discrete-time signal, 
x(k), is to take samples of an underlying analog signal, xa(t).

x(k) 5
D  

xa(kT ),   uku 5 0, 1, 2, Á

Here T  denotes the sampling interval or time between samples, 
and 5

D
 means equals by definition. When finite precision is used 

to represent the value of x(k), the sequence of quantized val-
ues is then called a digital signal. A system or algorithm which 
processes one digital signal x(k) as its input and produces a sec-
ond digital signal y(k) as its output is a digital signal proces-
sor. Digital signal processing (DSP) techniques have widespread 
applications, and they play an increasingly important role in the 
modern world. Application areas include speech recognition, 
detection of targets with radar and sonar, processing of music 
and video, seismic exploration for oil and gas deposits, medical 

1.1

Continuous-time signal

Analog signal

Discrete-time signal

Sampling interval

Digital signal
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4    Chapter 1  Signal Processing

signal processing including EEG, EKG, and ultrasound, communication channel equal-
ization, and satellite image processing. The focus of this book is the development, imple-
mentation, and application of modern DSP techniques.

We begin this introductory chapter with a comparison of digital and analog sig-
nal processing. Next, some practical problems are posed that can be solved using DSP 
techniques. This is followed by characterization and classification of signals. The funda-
mental notion of the spectrum of a signal is then presented including the concepts of 
bandlimited and white noise signals. This leads naturally to the sampling process which 
takes a continuous-time signal and produces a corresponding discrete-time signal. Sim-
ple conditions are presented that ensure that an analog signal can be reconstructed from 
its samples. When these conditions are violated, a phenomenon called aliasing occurs. 
The use of guard filters to reduce the effects of aliasing is discussed. Next DSP hard-
ware in the form of analog-to-digital converters (ADCs) and digital-to-analog converters 
(DACs) is examined. The hardware discussion includes ways to model the quantization 
error associated with finite precision converters. A menu-based graphical user interface 
(GUI) program called the DSP Companion is introduced that provides direct access to 
an extensive set of supplementary course materials. The DSP Companion allows the stu-
dent and the instructor to run and view chapter GUI modules, PowerPoint lecture slides, 
examples, figures, tables, definitions, propositions, algorithms, and selected problem solu-
tions that appear throughout the text. The GUI modules can be used to interactively 
explore the digital signal processing techniques covered in each chapter without any need 
for programming. For example, in this chapter GUI module g_sample allows the user to 
investigate the sampling of continuous-time signals including aliasing and quantization 
effects. The module g_reconstruct then allows the user to explore the reconstruction of 
continuous-time signals from their samples. The chapter concludes with a case study 
example, and a summary of signal sampling and reconstruction.

1.1.1 Digital and Analog Processing
For many years, almost all signal processing was done with analog circuits as shown in 
Figure 1.1. For example, operational amplifiers, resistors, and capacitors are used to real-
ize frequency-selective filters.

With the advent of specialized microprocessors with built-in data conversion circuits 
(Papamichalis, 1990), it is now commonplace to perform signal processing digitally as 
shown in Figure 1.2. Digital processing of analog signals is more complex because it typ-
ically requires the three components shown in Figure 1.2. The analog-to-digital converter 
or ADC at the front end converts the analog input xa(t) into an equivalent digital signal 

DSP Companion

GUI modules

Figure 1.1: Analog 
Signal Processing

xa(t)
Analog

processing
circuit

ya(t)

Figure 1.2: Digital 
Signal Processing

ADC
Digital

processing
program

DAC
x(k) y(k)

xa(t) ya(t)
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x(k). The processing of x(k) is then achieved with an algorithm that is implemented in 
software. For a filtering operation, the DSP algorithm consists of a difference equation, 
but other types of processing are also possible and are often used. The digital output sig-
nal y(k) is then converted back to an equivalent analog signal ya(t) by the digital-to-analog  
converter or DAC.

Although the DSP approach requires more steps than analog signal processing, there 
are many important benefits to working with signals in digital form. A comparison of the 
relative advantages and disadvantages of the two approaches is summarized in Table 1.1.

The primary advantages of analog signal processing are speed and cost. Digital sig-
nal processing is not as fast due to the limits on the sampling rates of the converter 
circuits. In addition, if  substantial computations are to be performed between samples, 
then the clock rate of the processor also can be a limiting factor. Speed can be an issue 
in real-time applications where the kth output sample y(k) must be computed and sent to 
the DAC as soon as possible after the kth input sample x(k) is available from the ADC. 
The delay is sometimes referred to as latency. However, there are also applications where 
the entire input signal is available ahead of time for processing off-line. For this batch 
mode type of processing, speed is less critical.

DSP hardware is often somewhat more expensive than analog hardware because 
analog hardware can consist of as little as a few discrete components on a stand-alone 
printed circuit board. The cost of DSP hardware varies depending on the performance 
characteristics required. In some cases, a PC may already be available to perform other 
functions for a given application, and in these instances the marginal expense of adding 
DSP hardware is not large.

In spite of these limitations, there are great benefits to using DSP techniques. Indeed, 
DSP is superior to analog processing with respect to virtually all of the remaining fea-
tures listed in Table 1.1. One of the most important advantages is the inherent flexibility 
available with a software implementation. Whereas an analog circuit might be tuned with 
a potentiometer to vary its performance over a limited range, a DSP algorithm can be 
completely replaced, on the fly, when circumstance warrant. DSP also offers considerably 
higher performance than analog signal processing. For example, digital filters with arbi-
trary magnitude responses and linear phase responses can be designed easily whereas this 
is not feasible with analog filters.

A common problem that plagues analog systems is the fact that the component val-
ues tend to drift with age and with changes in environmental conditions such as temper-
ature. This leads to a need for periodic calibration or tuning. With DSP there is no drift 
problem and therefore no need to manually recalibrate.

Since data are already available in digital form in a DSP system, with little or no addi-
tional expense one can log the data associated with the operation of the system so that its 
performance can be monitored, either locally or remotely over a network connection. If  
an unusual operating condition is detected, its exact time and nature can be determined, 

Real time

Latency

Table 1.1: Comparison 
of Analog and Digital 
Signal Processing

Feature Analog Processing Digital Processing

Speed Fast Moderate 
Cost Low to moderate Moderate 
Flexibility Low High 
Performance Moderate High 
Self-calibration No Yes 
Data logging capability No Yes 
Adaptive capability Limited Yes 
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6    Chapter 1  Signal Processing

and a higher-level control system can be alerted. Although strip chart recorders can be 
added to an analog system, this substantially increases the expense thereby negating one 
of its potential advantages.

The flexibility inherent in software can be exploited by having the parameters of the 
DSP algorithm vary with time and adapt as the characteristics of the input signal or the 
processing task change. Applications, like system identification and active noise control, 
exploit adaptive signal processing, a topic that is addressed in Chapter 9.

1.1.2 Total Harmonic Distortion (THD)
With the widespread use of digital computers, DSP applications are now commonplace. 
As a simple initial example, consider the problem of designing an audio amplifier to 
boost signal strength without distorting the shape of the input signal. For the amplifier 
shown in Figure 1.3, suppose the input signal xa(t) is a pure sinusoidal tone of amplitude 
a and frequency F0 Hz.

 xa(t) 5 a cos(2�F0t)  (1.1.1)

An ideal amplifier will produce a desired output signal yd 
(t) that is a scaled and delayed 

version of the input signal. For example, if  the scale factor or amplifier gain is K and the 
delay is �, then the desired output is

yd 
(t) 5 Kxa(t 2 �)

  5 Ka cos f2�F0(t 2 �)g  (1.1.2)

In a practical amplifier, the relationship between the input and the output is only approx-
imately linear, so some additional terms are present in the actual output ya.

ya(t) 5 Afxa(t)g

  <
d0

2
1 o

M21

i51

di cos(2�iF0t 1 �i)  (1.1.3)

The presence of the additional harmonics indicates that there is distortion in the amplified 
signal due to nonlinearities within the amplifier. For example, if  the amplifier is driven 
with an input whose amplitude a is too large, then the amplifier will saturate with the 
result that the output is a clipped sine wave that sounds distorted when played through 
a speaker. To quantify the amount of distortion, the average power contained in the ith 
harmonic is d 

2
i y2 for i $ 1 and d 

2
i y4 for i 5 0. Thus the average power of  the signal ya(t) is

 Py 5
d 2

0

4
1

1
2 o

M21

i51

d 2
i   (1.1.4)

The total harmonic distortion or THD of  the output signal ya(t) is defined as the 
power in the spurious harmonic components, expressed as a percentage of  the total 
power. Thus the following can be used to measure the quality of  the amplifier output.

 THD 5 
D 100(Py 2 d 2

1y2)

Py
 %  (1.1.5)

Gain

Average power

Total harmonic 
distortion

Figure 1.3: An 
Audio Amplifier

Kxa(t) ya(t)
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For an ideal amplifier di 5 0 for i Þ 1 and

 d1 5 Ka   (1.1.6a)

 �1 5 22�F0�  (1.1.6b)

Consequently, for a high-quality amplifier, the THD is small, and when no distortion 
is present THD 5 0. Suppose the amplifier output is sampled to produce the following 
digital signal of length N 5 2M.

 y(k) 5 ya(kT ),  0 # k , N  (1.1.7)

If  the sampling interval is set to T 5 1y(NF0), then this corresponds to one period of 
ya(t). By processing the digital signal x(k) with something called the discrete Fourier 
transform or DFT, it is possible to determine di and �i for 0 # i , M. In this way the total 
harmonic distortion can be measured. The DFT is a key analytic tool that is introduced 
in Chapter 4.

1.1.3 A Notch Filter
As a second example of a DSP application, suppose one is performing sensitive acous-
tic measurements in a laboratory setting using a microphone. Here, any ambient back-
ground sounds in the range of frequencies of interest have the potential to corrupt the 
measurements with unwanted noise. Preliminary measurements reveal that the overhead 
fluorescent lights are emitting a 120 Hz hum, which corresponds to the second harmonic 
of the 60 Hz commercial AC power. The problem then is to remove the 120 Hz frequency 
component while affecting the other nearby frequency components as little as possible. 
Consequently, you want to process the acoustic data samples with a notch filter designed 
to remove the effects of the fluorescent lights. After some calculations, you arrive at the 
following digital filter to process the measurements x(k) to produce a filtered signal y(k).

y(k) 5 1.6466y(k 2 1) 2 .9805y(k 2 2) 1 .9905x(k)

 2 1.6471x(k 2 1) 1 .9905x(k 2 2)  (1.1.8)

The filter in (1.1.8) is a notch filter with a bandwidth of 4 Hz, a notch frequency of 
Fn 5 120 Hz, and a sampling frequency of fs 5 1280 Hz. A plot of the frequency response 
of this filter is shown in Figure 1.4 where a sharp notch at 120 Hz is apparent. Notice 
that except for frequencies very close to Fn, all other frequency components of x(k) are 
passed through the filter without attenuation. The design of notch filters is discussed in 
Chapter 7. 

1.1.4 Active Noise Control
An application area of DSP that makes use of adaptive signal processing is active con-
trol of acoustic noise (Kuo and Morgan, 1996). Examples include industrial noise from 
rotating machines, propeller and jet engine noise, road noise in an automobile, and noise 
caused by air flow in heating, ventilation, and air conditioning systems. As an illustration 
of the latter, consider the active noise control system shown in Figure 1.5, which consists 
of an air duct with two microphones and a speaker. The basic principle of active noise 
control is to inject a secondary sound into the environment so as to cancel the primary 
sound using destructive interference.

Notch filter
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8    Chapter 1  Signal Processing

The purpose of the reference microphone in Figure 1.5 is to detect the primary noise 
x(k) generated by the noise source or blower. The primary noise signal is then passed 
through a digital filter of the following form.

 y(k) 5 o
m

i50

wi 
(k)x(k 2 i )  (1.1.9)

The output of the filter y(k) drives a speaker that creates the secondary sound, some-
times called antisound. The error microphone, located downstream of the speaker, 
detects the sum of the primary and secondary sounds and produces an error signal e(k).  
The objective of the adaptive algorithm is to take x(k) and e(k) as inputs and adjust the 
filter weights w(k) so as to drive e2(k) to zero. If  zero error can be achieved, then silence 
is observed at the error microphone. In practical systems, the error or residual sound is 
significantly reduced by active noise control.

To illustrate the operation of this adaptive DSP system, suppose the blower noise is 
modeled as a periodic signal with fundamental frequency F0 and r harmonics plus some 
random white noise v(k).

 x(k) 5 o
r

i51

ai cos(2�ikF0T 1 �i) 1 v(k),  0 # k , p  (1.1.10)

Antisound

Figure 1.4:  
Magnitude 
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Fn 5 120 Hz
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For example, suppose F0 5 100 Hz and there are r 5 4 harmonics with amplitudes 
ai 5 1yi and random phase angles. Suppose the random white noise term is distributed 
uniformly over the interval f2.5, .5g. Let p 5 2048 samples, and suppose the sampling 
interval is T 5 1y1600 s and the filter order is m 5 40. The adaptive algorithm used to 
adjust the filter weights is called the FXLMS method, and it is discussed in detail in 
Chapter 9. The results of applying this algorithm are shown in Figure 1.6.

Initially the filter weights are set to w(0) 5 0, which corresponds to no noise control 
at all. The adaptive algorithm is not activated until sample k 5 512, so the first quarter 
of the plot in Figure 1.6 represents the ambient or primary noise detected at the error 
microphone. When adaptation is activated, the error begins to decrease rapidly, and after 
a short transient period it reaches a steady-state level that is more than an order of mag-
nitude quieter than the primary noise itself. We can quantify the noise reduction by using 
the following measure of overall noise cancellation.

 E 5 10 log10 1 o
py421

i50

e2(i)2 2 10 log10 1 o
p21

i53py4

e2(i)2   dB   (1.1.11)

The overall noise cancellation E is the log of the ratio of the average power of the noise 
during the first quarter of the samples divided by the average power of the noise during 
the last quarter of the samples, expressed in units of decibels. Using this measure, the 
noise cancellation observed in Figure 1.6 is E 5 32.1 dB.

1.1.5 Video Aliasing
Later in Chapter 1 we focus on the problem of sampling a continuous-time signal xa(t) 
to produce the following discrete-time signal, where T .  0 is the sampling interval and 
fs 5 1yT  is the sampling frequency.

 x(k) 5 xa(kT ),  uku 5 0, 1, 2, Á   (1.1.12)

Figure 1.6:  
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